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Introduction
Some applications of Markov Chains

Arti�cial intelligence (decision framework)[Russell and Norvig, 2013]

Arts
Melodies generation[Pachet et al., 2011]

Lyrics generation[Barbieri et al., 2012]

Economics and business[Hamilton, 1989]

We applied theMarkov Transition Constraintto an operation research
problem from search theory[Stone, 2004]:

The Optimal Search Path problem

M. Morin, C.G. Quimper (U.Laval) Introducing th MTC June 14, 2015 2 / 30



Introduction
Some applications of Markov Chains

Arti�cial intelligence (decision framework)[Russell and Norvig, 2013]

Arts
Melodies generation[Pachet et al., 2011]

Lyrics generation[Barbieri et al., 2012]

Economics and business[Hamilton, 1989]

We applied theMarkov Transition Constraintto an operation research
problem from search theory[Stone, 2004]:

The Optimal Search Path problem

M. Morin, C.G. Quimper (U.Laval) Introducing th MTC June 14, 2015 2 / 30



Introduction
Motivating example

A child is lost in a mall and moves between three stores...
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Introduction
Motivating example

Suppose that we know the probability distribution (X ) on the child’s
location.

It is easy to compute the distribution (Y ) on the child’s location after
1 time step (e.g., a minute):

XM = Y
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Markov chains are made of several consecutive Markov transitions.

A Markov Transition Constraint(Mtc ) encodes a single transition.

It has the potential to encode Markov chains.
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Introduction
Motivating example

In an Mtc , the distributionsX and Y are Constraint Programming
(CP) variables with interval domains.

XM = Y
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Introduction
Motivating example

It is not an easy task to compute the tightest intervals of theXi and
of the Yi variables:

XM = Y
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The Markov Transition Constraint

We propose theMtc as a way of modeling Markov chains in CP.

De�nition (The markov transition constraint)
GivenM , a known Markovian transition matrix, theMtc is de�ned as
follows:

Mtc ([Y1; : : : ; YN ] ; [X1; : : : ; XN ] ; M )

,

8j 2 N :
X

i 2N

Xi M ij = Yj Y j is the scalar productXM j

and
X

i 2N

Xi = 1 X is a probability distribution

wheredom(Xi ) =
h
X i ; X i

i
, and dom(Yj ) =

h
Y j ; Y j

i
.
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The Markov Transition Constraint

Why to use anMtc instead of elementary (individual) constraints?

Expressiveness:
We may chain severalMtc to encode a whole Markov chain.
We may add supplementary constraints on the probability variables.
The model is simpler.

E�ciency:
Filtering the probability variables requires specialized algorithms.
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Filtering the Markov Transition Constraint

De�nition (Interval support)
Let C([X1; : : : ; Xn]) be a constraint of arityn.
The assignment[X1; : : : ; Xn] = [ x1; : : : ; xn] is an interval support if and
only if C([x1; : : : ; xn]) is satis�ed and the inequalitiesX i � xi � X i hold.

De�nition (Bounds consistency)
A constraint C([X1; : : : ; Xn]) is bounds consistent if and only if, for every
variableXi , there exists an interval supportwhere the variable is assigned
to the lower bound of its domainand an interval support where the
variable is assigned to the upper bound of its domain.
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Filtering the Markov Transition Constraint
Interval Arithmetic (decomposition into elementary constraints)

We decompose theMtc (Y ; X ; M ) into linear constraints as follows:

Decomposition
X

i 2N

Xi M i1 = Y1

X

i 2N

Xi M i2 = Y2

: : :
X

i 2N

Xi M iN = YN

X

i 2N

Xi = 1
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The CP solver propagates the constraintsindividually.
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Filtering the Markov Transition Constraint
Interval Arithmetic (decomposition into elementary constraints)

We can even addredundant constraintsto improve the �ltering:

Decomposition
X

i 2N

Xi M i1 = Y1

X

i 2N

Xi M i2 = Y2

: : :
X

i 2N

Xi M iN = YN

X

i 2N

Xi = 1

Implied constraints
X

j 2N

Yj M � 1
1j = X1

X

j 2N

Yj M � 1
2j = X2

: : :
X

j 2N

Yj M � 1
Nj = XN

X

j 2N

Yj = 1
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Filtering the Markov Transition Constraint
Interval Arithmetic (decomposition into elementary constraints)

The decomposition is equivalent to

XM = Y
X

i 2N

Xi = 1

Which leads to the following implied constraints:

YM � 1 = X
X

j 2N

Yj = 1

Implied constraints improve �ltering.
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Filtering the Markov Transition Constraint
Interval Arithmetic (decomposition into elementary constraints)

The approach is simple anddoes not even requirea global constraint...
but it has a weak �ltering even with implied constraints.
Suppose we use interval arithmetic to individually propagates the
constraintsXM = Y and constraint

P
i 2N Xi = 1:

X M Y
h

[0; 1] [0; 1] [0; 1]
i

2

6
4

7
8

1
8 0

1
3

1
3 1

0 1 0

3

7
5

h
[0; 1] [0; 1] [0; 1]

i

h
[0; 1] [0; 1] [0; 1

3 ]
i

Tight bounds
h

[0; 7
8 ] [ 1

8 ; 1] [0; 1
3 ]

i
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Filtering the Markov Transition Constraint
Linear programming (enforcing bounds consistency)

The maximum value forX k is given by the following linear program:

minXk

subject to

8j 2 N :
X

i 2N

M ij Xi = Yj Y j is the scalar productXM j

X

i 2N

Xi = 1 X is a probability distribution

8i 2 N : X i � Xi � X i

8j 2 N : Y j � Yj � Y j

Filtering algorithms forX k , Y k , and Y k follow from a modi�cation of the
objective function.
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Filtering the Markov Transition Constraint
Linear programming (enforcing bounds consistency)

Linear programmingenforces boundsconsistency...

X M Y
h

[0; 1] [0; 1] [0; 1]
i
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8
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0 1 0

3

7
5

h
[0; 1] [0; 1] [0; 1]

i

h
[0; 7

8 ] [ 1
8 ; 1] [0; 1

3 ]
i

... but we need to solve 2 linear programs per variable.

M. Morin, C.G. Quimper (U.Laval) Introducing th MTC June 14, 2015 14 / 30



Filtering the Markov Transition Constraint
Linear programming (enforcing bounds consistency)

Linear programmingenforces boundsconsistency...

X M Y
h

[0; 1] [0; 1] [0; 1]
i

2

6
4

7
8

1
8 0

1
3

1
3 1

0 1 0

3

7
5

h
[0; �1] [�0; 1] [0; �1]

i

Domains after �ltering
h

[0; 7
8 ] [ 1

8 ; 1] [0; 1
3 ]

i

... but we need to solve 2 linear programs per variable.

M. Morin, C.G. Quimper (U.Laval) Introducing th MTC June 14, 2015 14 / 30



Filtering the Markov Transition Constraint
Fractional Knapsack (heuristic �ltering)

Until a precision of� is reached, the algorithm:
applies interval arithmetic �ltering
propagates

X

i 2N

Xi M ij = Yj

X

i 2N

Xi = 1

the Mtc de�nition constraints (8j )

X

j 2N

Yj M
� 1

ij = Xi

X

j 2N

Yj = 1

and their implied constraints(8i )
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Filtering the Markov Transition Constraint
Fractional Knapsack (heuristic �ltering)

X

i 2N

Xi M i1 = Y1

X

i 2N

Xi M i2 = Y2

: : :
X

i 2N

Xi M iN = YN

X

i 2N

Xi = 1

X

j 2N

Yj M � 1
1j = X1

X

j 2N

Yj M � 1
2j = X2

: : :
X

j 2N

Yj M � 1
Nj = XN

X

j 2N

Yj = 1

The same is done for the implied constraints.
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Filtering the Markov Transition Constraint
Fractional Knapsack (heuristic �ltering)

Better than interval arithmetic
Less overhead than linear programming
... but does not enforce bounds consistency in all cases.
However, it enforces bounds consistency in the usual case of forward
reasoning:

XM = Y

with dom(Yj ) = [ 0; 1]

In general, it enforces bounds consistency whenever

for all columnsj of matrix M
we have that:

[mj ; mj ] � dom(Yj )
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Forward inference
(dom(Yi ) = [ 0; 1])

Backward inference
(dom(Xi ) = [ 0; 1])

Randomly generated transition matrices and bounds with up to N= 100 states.
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Forward inference
(dom(Yi ) = [ 0; 1])

bound consistency

b
ound

consistency

Backward inference
(dom(Xi ) = [ 0; 1])

bound consistency

b
ound

consistency

Randomly generated transition matrices and bounds with up to N= 100 states.

M. Morin, C.G. Quimper (U.Laval) Introducing th MTC June 14, 2015 19 / 30



Application to the Optimal Search Path Problem
The Optimal Search Path Problem

A searcher (S) moves on a graph.

S

O

S/He tries to �nd a lost and moving object (O) within T time steps.
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Application to the Optimal Search Path Problem
The Optimal Search Path Problem

Suppose that there is no searcher.

1.0

The object’s whereabouts would evolve according toM .
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Application to the Optimal Search Path Problem
The Optimal Search Path Problem

The searcher (S) removes the object as soon as s/he detects it.

S

1.0

Removed

There is no escape from the �removed� state.
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Application to the Optimal Search Path Problem
The Optimal Search Path Problem

At each time steps, the searcher (S) searches its current location.

S Removed

By doing so, the searcher in�uences the chain evolution.
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Application to the Optimal Search Path Problem
Modeling an Optimal Search Path WithMtc s

The searcher’s goal is to maximize the probability of removing the object1

subject to:
graph edges constraints on the searcher’s path;
searches along the searcher’s path; and,
the probability distribution evolution (Markov transitions).

1also known ascumulative overall probability of success
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Application to the Optimal Search Path Problem
Modeling an Optimal Search Path WithMtc s

Two distributionsare chained, usingMtc , to model both the object’s
movements and the searches:

1 the distribution X t , i.e., the whereabouts;
2 the searched distributionbX t , i.e., the whereabouts after a search.
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Application to the Optimal Search Path Problem
Modeling an Optimal Search Path WithMtc s

At a time step t , the searches are computed by the model in two phases:
1 An Mtc is used to apply the motion model of the object:

Mtc

 

X t + 1; bX t ;

"
M 0
0 1

#!

whereX t + 1 is the updated distribution after a transition from the
searched distributionbX t .

2 Then, the searcher tries to detect the object at her/his location and
the probabilities of presence �transit� to the �removed� state inbX t + 1.
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Conclusion

Contributions:
The Markov Transition Constraint (Mtc )
Two �ltering algorithms for the Mtc :

a linear programming-based�ltering algorithm; and,
a fractional knapsack-based�ltering algorithm.

Improved performancewith respect to the decomposition approach
Application of the Mtc to the Optimal Search Pathproblem

Based on:

[Morin and Quimper, 2014] Morin, M. and Quimper, C.-G. (2014).
The Markov transition constraint.
In Integration of AI and OR Techniques in Constraint Programming, pages 405�421.
Springer.
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Discussion

Thank you for your
attention.

Seehttp://www.MichaelMorin.info for
the most recent related updates.

Based on:

[Morin and Quimper, 2014] Morin, M. and Quimper, C.-G. (2014).
The Markov transition constraint.
In Integration of AI and OR Techniques in Constraint Programming, pages 405�421.
Springer.
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