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Introduction

Some applications of Markov Chains

Arti cial intelligence (decision framework)Rrussell and Norvig, 2013]

Arts
Melodies generatiofPachet et al., 2011]
Lyrics generationgarbieri et al., 2012]

Economics and businessamilion, 1989]

We applied theMarkov Transition Constrainto an operation research
problem from search theorystone, 2004

The Optimal Search Path problem
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Introduction

Motivating example

A child is lost in a mall and moves between three stores...
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Introduction

Motivating example

Suppose that we know the probability distributiorX{ on the child’'s
location.
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Introduction

Motivating example

Suppose that we know the probability distributiorX{ on the child’'s
location.

It is easy to compute the distribution() on the child’s location after
1 time step (e.g., a minute):

XM = Y ,
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Markov chains are made of several consecutive Markov transitions.
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Markov chains are made of several consecutive Markov transitions.
A Markov Transition Constrain{Mtc ) encodes a single transition.

It has the potential to encode Markov chains.
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Introduction

Motivating example

In an Mtc , the distributionsX andY are Constraint Programming
(CP) variables with interval domains.

XM = Y
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Introduction

Motivating example

It is not an easy task to compute the tightest intervals of thg and
of the Y; variables:
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The Markov Transition Constraint

We propose theMtc as a way of modeling Markov chains in CP.

De nition (The markov transition constraint)

GivenM, a known Markovian transition matrix, théitc is de ned as
follows:

8 2N XiMj =Y, Y; is the scalar producXM!
5 12N
and X = X is a probability distribution
2N
h i h i

wheredom(X;) = X;;X; , anddom(Y;) = Y;;Y; .
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The Markov Transition Constraint

Why to use anMtc instead of elementary (individual) constraints?

Expressiveness:

We may chain severdfitc to encode a whole Markov chain.

We may add supplementary constraints on the probability variables.
The model is simpler.

E ciency:

Filtering the probability variables requires specialized algorithms.
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Filtering the Markov Transition Constraint

De nition (Interval support)
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Filtering the Markov Transition Constraint

De nition (Interval support)

variableX;, there exists an interval supporthere the variable is assigned
to the lower bound of its domaimand an interval support where the
variable is assigned to the upper bound of its domain.
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Filtering the Markov Transition Constraint

Interval Arithmetic (decomposition into elementary constraints)

We decompose thditc (Y; X;M) into linear constraints as follows:

XDecomposition
XiMi1 = Yy
igN
XiMiz = Y3
i2N
X
XiMin = YN
N
Xi=1
i2N
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The CP solver propagates the constraintalividually.
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Filtering the Markov Transition Constraint

Interval Arithmetic (decomposition into elementary constraints)

We can even addedundant constraintgo improve the ltering:

XDecomposition
XiMi1 = Y,
igN
XiMiz = Y3
i2N
X
XiMin = YN
N
Xi=1
i2N

M. Morin, C.G. Quimper (U.Laval)

I)r(nplied constraints

YiM 1= X
i2N
X 1
YJ'M 2 = Xz
i2N
YiM gy = Xn
j2N
X
Yi=1
j2N
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Filtering the Markov Transition Constraint

Interval Arithmetic (decomposition into elementary constraints)

The decomposition is equivalent to

i2N

Which leads to the following implied constraints:

YM 1= X
X

Yj =1
j2N

Implied constraints improve ltering.
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Filtering the Markov Transition Constraint

Interval Arithmetic (decomposition into elementary constraints)

The approach is simple andoes not even requira global constraint.

but it has a weak ltering even with implied constraints.

Suppose we use interval arithmeticpto individually propagates the
constraintsXM = Y and constraint 5 X; = 1:

X
h i
01 [0:1] [0;1] 4

Y
h i
[0;1] [0;1] [0;1]

O Wik~
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Filtering the Markov Transition Constraint

Interval Arithmetic (decomposition into elementary constraints)

The approach is simple andoes not even requira global constraint...

but it has a weak ltering even with implied constraints.

Suppose we use interval arithmeticpto individually propagates the
constraintsXM = Y and constraint 5 X; = 1:

X Mo, %

h g8 3 9, N i
01 (01 (01 41116 (o1 [y [0
010

h i
Domains after Itering [0;1] [0;1] [0;3]
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Filtering the Markov Transition Constraint

Interval Arithmetic (decomposition into elementary constraints)

The approach is simple andoes not even requira global constraint...

but it has a weak ltering even with implied constraints.

Suppose we use interval arithmetic,to individually propagates the
constraintsXM = Y and constraint 5 X; = 1:

X M 3 Y
h i e§ 3 05 N i
o1 01 (01 41 116 oy [0y [0y
0 10
h i
Weak Itering [o;[8 [0;1 [0;3]
. .
Tight bounds [0;Z1 [5:1 [0;3] |
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Filtering the Markov Transition Constraint

Linear programming (enforcing bounds consistency)

The maximum value foX, is given by the following linear program:

min X
subject to
. X _ .

8j 2N : MiX =Y, Y; is the scalar produckM’

igN
Xi=1 X is a probability distribution

i2N

8i2N : X; X X

82N 1 Y, Y, Vj

Filtering algorithms forYk, Y,, and Vk follow from a modi cation of the
objective function.
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Filtering the Markov Transition Constraint

Linear programming (enforcing bounds consistency)

Linear programmingenforces boundsonsistency...

X

h i
01 [01 [0;1] 3

3 Y
h i
£ 01 [0:1 [01]

O Wik~
= Wl Z
ok O

... but we need to solve 2 linear programs per variable.
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Filtering the Markov Transition Constraint

Fractional Knapsack (heuristic Itering)

Until a precision of is reached, the algorithm:
applies interval arithmetic ltering

propagates
X 1
XiMij = YJ YJM ij = Xi
i j2N
i2N X J X
Xi =1 YJ =1
i2N j2N

the Mtc de nition constraints (8j)  and their implied constraint$8i)
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Filtering the Markov Transition Constraint

Fractional Knapsack (heuristic Itering)

X
XiMi1 = Y3
N
XiMijz> = Y;
i2N
X
XiMin = Yy
N
Xi =1
i2N
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Filtering the Markov Transition Constraint

Fractional Knapsack (heuristic Itering)

X X 1

XiMij1 = Y1 YiM g5 = X
N i

XiMi2 = Y2 YiM 15 = X;
i2N j2N
x «

XiMin = YN YiM 1y = X
i2N X j2N X

Xi=1 Y =1

The same is done for the implied constraints.
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Filtering the Markov Transition Constraint

Fractional Knapsack (heuristic Itering)

Better than interval arithmetic
Less overhead than linear programming
... but does not enforce bounds consistency in all cases.

However, it enforces bounds consistency in the usual case of forwa
reasoning:

XM =Y

with dom(Y;) =[0; 1]
In general, it enforces bounds consistency whenever

for all columnsj of matrix M
we have that:
[my;m;]  dom(Y;)
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Forward inference Backward inference
(dom(Y;) =[0;1]) (dom(X;) =[0;1])

Randomly generated transition matrices and bounds with up te=NLOO states.
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Forward inference Backward inference
(dom(Y;) =[0;1]) (dom(X;) =[0;1])
bound consistency bound consistency

A2Ua]SISUOD punoq
Aoua)sISuod punoq

Randomly generated transition matrices and bounds with up te=NLOO states.
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Application to the Optimal Search Path Problem

The Optimal Search Path Problem

A searcher §) moves on a graph.

S/He tries to nd a lost and moving object ©) within T time steps.
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Application to the Optimal Search Path Problem

The Optimal Search Path Problem

Suppose that there is no searcher.

The object’s whereabouts would evolve accordingMo
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Application to the Optimal Search Path Problem

The Optimal Search Path Problem

The searcher $) removes the object as soon as s/he detects it.

There is no escape from the removed state.
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Application to the Optimal Search Path Problem

The Optimal Search Path Problem

At each time steps, the searche8) searches its current location.

By doing so, the searcher in uences the chain evolution.

M. Morin, C.G. Quimper (U.Laval) Introducing th MTC June 14, 2015 23/30



Application to the Optimal Search Path Problem

The Optimal Search Path Problem

At each time steps, the searche8) searches its current location.

By doing so, the searcher in uences the chain evolution.

M. Morin, C.G. Quimper (U.Laval) Introducing th MTC June 14, 2015



Application to the Optimal Search Path Problem

Modeling an Optimal Search Path WithMtc s

The searcher’s goal is to maximize the probability of removing the oBjec
subject to:

graph edges constraints on the searcher’s path;
searches along the searcher’s path; and,
the probability distribution evolution (Markov transitions).

lalso known ascumulative overall probability of success
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Application to the Optimal Search Path Problem

Modeling an Optimal Search Path WithMtc s

Two distributionsare chained, usingitc , to model both the object’s
movements and the searches:

the distribution X!, i.e., the whereabouts:
the searched distributior’kt, i.e., the whereabouts after a search.
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Application to the Optimal Search Path Problem

Modeling an Optimal Search Path WithMtc s

At a time stept, the searches are computed by the model in two phases
An Mtc is used to apply the motion model of the object:
" #!
M O
t+1. pt.
Mtc X'+ Rt 0 1

whereX'*1 is the updated distribution after a transition from the
searched distributiorR! .

Then, the searcher tries to detect the object at her/his location and
the probabilities of presence transit to the removed state iRt 1,
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Conclusion

Contributions:
The Markov Transition Constraint Mtc )

Two lItering algorithms for the Mtc

a linear programming-basedtering algorithm; and,
a fractional knapsack-basedtering algorithm.

Improved performancevith respect to the decomposition approach
Application of the Mtc to the Optimal Search Pathproblem

Based on:
[Morin and Quimper, 2014] Morin, M. and Quimper, C.-G. (2014).
The Markov transition constraint.

In Integration of Al and OR Techniques in Constraint Programmingages 405 421.
Springer.
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Discussion

Thank you for your
attention.

Seehttp://www.MichaelMorin.info  for
the most recent related updates.

Based on:
[Morin and Quimper, 2014] Morin, M. and Quimper, C.-G. (2014).
The Markov transition constraint.

In Integration of Al and OR Techniques in Constraint Programmingages 405 421.
Springer.
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